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In industrial production-distribution systems, production and purchasing rates, associated
inventories, and sales are very critical for the profits of each component in the system. The
objective of this study is to investigate an effective information contro! scheme for a production
~distribution system by automatic feedback control techniques. In this work, a dynamic control
scheme that has an integrated-error with state-feedback and filtering (ISFF) 1s proposed as a
new ajgorithm for a dynamic controller. Generalized formulations of the dynamic control are
proposed in the continuous-time and discrete-time cases. A methodology for an evaluation of
ISFF controller gains using the eigen structure property is presented. When an upper-limit is
imposed on the production capability by available factory space and capital equipment, supervi-
sory control is provided to avoid integrator-windup and deterioration of system performance.

Key Wards | Supervisory Control, Dynamic Controller, Actuator Saturation, Reset Windup,
Multi-Echelon Production-Distribution Systems

1. Intrqduction

Of central significance in many industrial com-
panies is the information management of produc-
tion and distribution systems. A recurring prob-
lem is to match the production rates to the rate of
final consumer sales. [t is well known that the
factory production rate often fluctuates morce
widely than does the actual consumer purchasing
rate. It has frequently been observed that a distri-
bution system of cascaded inventories and order-
ing procedures amplify small disturbances which
occur at the retail level.

A schematic structure of a multi-echelon pro-
duction-distribution system which consists of
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three echelons — retailer, distributor, and factory
—is shown 1n Fig. 1. Demand from the customer
market results in orders which enter the system at
the lowest echelon. The demand is satisfied from
inventory located at the retail sector. As the
inventory is out of stock, orders for goods are
placed to the distributor. This process of ordering
from the above stocking point continues up the
line to the top echelon which is supplied from the
source or factory. The circled lines show the
upward flow of orders for goods, while the solid
lines represent the shipment of goods flowing
downward. One notes that three levels of inven-
tory exist : factory, distributor, and retailer. One
component of the orders being processed is neces-
sarily proportional to the average level of busi-
ness activity and to the length of lead-time
required to fill an order. Both an increased sales
volume and an increased delivery lead-time give
rise to increased total orders in the supply line
(Forrester, 1961).

Production-distribution systems require cou-
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Fig. 1 Schematic structure of multi-echelon produc-
tion-distribution system

sideration of the flow of goods. The material flow
is controlled by orders representing decisions
based on information about inventories and sales.
Because of the critical importance of purchasing
or manufacturing decision to total procurement
costs and inventory costs, it is desired to maintain
a relatively stable production policy rather than
going through hiring and lay-off cycles as sales
fluctuate. At the same time unnecessary fluctua-
tions in inventory levels are to be avoided
(Christensen 1971).

Conventional studies in the analysis of produc-
tion-distribution systems is to conceptualize the
system as one in which three types of inventory
costs are subject to control : carrying cost, short-
age cost, and procurement cost. The objective of
production-distribution system analysis is to
minimize the sum of each cost component (Meyer
1972). However, for certain kinds of complicated
production-distribution systems, an additional
purpose of analysis is to investigate the behavior
of the system as a function of time, as well as to
minimize the aggregate of inventory costs. In
studying complex production-distribution sys-

tems, one is frequently interested as much in the
dynamic stability and frequency response of the
system as in optimality when the system is subject-
ed to parametric uncertainties. Most of the
research associated with this kind of production
-distribution system using continuous linear sys-
tem analysis has been accomplished by utilizing
an output feedback control law, which is a pro-
portional control based upon the difference
between the desired inventory and the actual
inventory, to decide a purchasing policy or manu-
facturing policy.

The motivation of this work is to demonstrate
in a comprehensive manner the application of
modern control techniques to a class of produc-
tion-distribution system problems. Generally, this
kind of dynamic control gives stability robustness
and good performance in the perturbed system as
well as the nominal plant (Jeong 1994c, 1996).

On the other hand, in many practical situations,
production-distribution systems are in fact
controlled by piecewise-constant policies with an
upper-limit, which is one of the critical nonlinear
characteristics, imposed on production capability
by available factory space and capital equipment.
The effect of limited capital equipment can be
demonstrated by simply restricting permissible
factory production. This could be done by impos-
ing an upper-limit on the rate at which manufac-
turing orders can be sent to the factory (Forrester
1661). Saturation of decision policies not only
deteriorates control system performance but also
can lead to a large overshoot, inducing a limit
cycle or an unstable oscillation in the output
response. In the presence of unusually large initial
conditions, plant disturbances, or parametric sys-
tem uncertainties, it is well known that reset-
windup appears when controllers with integral
action are used with saturating actuators and may
lead to a large overshoot in the system response
(Krikelis 1984). The major motivation of this
study is focused on the investigation of a dynamic
information control scheme of multi-echelon
production-distribution systems with saturated
decision policy to guarantee anti-reset-windup
and stability robustness as well as good perfor-
mance for disturbance rejection.
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2. Literature Survey

2.1 Control of production-distribution sys-
tems

Generally, it is known that an efficient produc-
tion-distribution system can only be designed and
operated if the dynamic behavior of the constitu-
ent parts is properly understood. Two approaches
to the deeper understanding of the dynamic
behavior of production-distribution systems have
appeared in the literature. The older established
approach uses linear control theory to single or
multiple systems. There are many variants to this
analysis approach, first introduced by Simon
(1952). Simon applied Laplace transform con-
cepts to a single loop continuous time system of
the production control problem. The recent con-
trol theory based on the state-space representa-
tion is also applicable. An early contribution was
by Christensen and Brogan (1971), who optim-
ized a simulation model describing the manufac-
turing process of automobile gearboxes. Meyer
and Groover(1972) have developed continuous
systems analysis and simulation in simple multi-
echelon inventory systems using output feedback
control, although general results were not de-
scribed. Since then, a wide number of related
techniques have been introduced, chiefly by Brian
Porter and his associates at the University of
Salford (1974, 1975, 1976). Using full-state feed-
back control in production-distribution systems,
Tao and Zunde (1986) proposed a stochastic
optimal control approach to a class of production
and inventory problems with a known distur-
bance. Recently, Towill (1982) accomplished a
dynamic analysis of an inventory and order-
based production control system based on La-
place transfer function analysis. A few years later,
Vecchio and Towill (1990) suggested a knowl-
edge-based simulation framework for the simple
two-echelon production-distribution system and
implemented a reference model at the factory level
using a output feedback scheme. The alternative
approach is to use a special methodology origi-
nally called Industrial Dynamics by the origina-
tor, Jay W. Forrester (1961), but now often

referred to as System Dynamics (Roberts 1978;
Legasto et al. 1980), Management Dynamics
(Coyle 1977), or Urban Dynamics (Alfeld and
Graham 1976). Essentially, industrial dynamics
involves the solution of the dynamical equations
of the model including nonlinear effects and time
-varying systems (Forrester 1961, 1975). How-
ever, in those approaches, there is not sufficient
information about the system behavior 1) when
the production-distribution systems have uncer-
tainties and 2) when upper-limits are imposed on
productive capacity.

The objective of this work is 1) to describe a
control scheme to improve performance robust-
ness of uncertain systems and 2) to show how to
handle systems with decision variable constraints
in a feedback control framework.

22 Dynamic control

In the design of control systems, it is necessary
to eliminate the effect of offset errors caused by
bounded disturbances. Integral action on the
dynamic controllers results in a closed-loop sys-
tem in which the outputs follow step commands
and reject unmeasurable arbitrary disturbances
with bounded constant values. The stabilizing
effect of the integral control can be supplemented
by appropriate state-feedback action so that one
can achieve a satisfactory transient response as
well as the desired zero steady-state error. The
pseudo-~derivative feedback (PDF) control, a
dynamic control with integral action, was
introduced by Phelan (1977), who suggested that
the PDF controller constitutes an optimum
scheme for all types of plants. The PDF control
scheme of n-th order plant consists of one inte-
grator in the feed-forward loop with (n-1)-th
order derivatives in the feedback loop. PDF
demonstrates very good performance when util-
ized with certain low order systems but encoun-
ters serious noise effects in higher order systems.
Seraji (1979) has applied PI-type controllers for
multivariable systems, and Krikelis (1982) has
developed the PDF control scheme for 4th-order
tracking problems with two PDF controllers in
series included in one derivative term in the feed-
back loop. In that system, controller parameters
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have to be tuned by trial and error procedures.
Maday (1987) formalized the Integrated-Error
with State-Feedback (IESF) control scheme by a
closed-loop pole-placement technique in hybrid
control systems. It is an extension of PDF without
the derivative term in the feedback loop. Maday
and Johnson (1989) applied IESF control for a
decentralized noncollocated active vibration con-
trol systems. Recently, Aida and Kidamori
(1990) designed an optimal servo-system by a
classical PI-type state-feedback control. They
adopted an identity transfer function between the
PI-type state-feedback control and the conven-
tional full-state feedback to optimize a servo
system.

In this work, generalized formulations about
dynamic controllers are provided in the continu-
ous-time and discrete-time case. Moreover, a new
methodology for an evaluation of ISFF controller
gains using the Jordan-Canonical form is em-
ployed to simplify the calculations.

2.3 Saturated system control

In practical control systems, the dynamic range
of actuators is limited (or saturated) when the
actuators are driven by sufficiently large signals.
This gives rise to a nonlinearity as a result of
actuator saturation. For example, the upper limit
is imposed on productive capability by available
factory space and capital equipment. A saturating
actuator may lead to not only a large overshoot
but also deterioration of performance. It is well
~-known that reset-windup appears when regula-
tors (with integral action) are used with saturat-
ing actuators, and the reset-windup may lead to a
large overshoot in the system response (Wang

and Chen 1988; Glattfelder and Schaufelberger -

1983; Astrom and Wittenmark 1984). Eventually,
a large overshoot results in a limit cycle or an
unstable oscillation in the output response (Su
1989, 1990). Glattfelder and Schaufelberger
(1983) have proposed an anti-reset windup cir-
cuit to avoid the windup problem by adding a
signal limiter on nonlinear feedback to the regula-
tor. Another attempt to a limiting the feedback
-output signal of integrators, called the intelligent
integrator, has been proposed by Krikelis (1980).

Maday and Jeong (1994) developed a supervisory
controller to avoid reset windup and improve
system performance by implementing a nominal
reference model for a simple production model
with saturated purchasing rate.

In this work, supervisory control is extended to
a discrete-time dynamic control. Moreover, the
characteristics of robustness in the supervisory
control for saturated systems with uncertainties is
investigated.

3. Problem Formulation of
Dynamic Control

Let us consider a linear time invariant (LTI)
dynamic system as follows:

£ () =Ax(t) +Bu(t) x(0)=x (1)
v(t)=Dx(t) 2)

where x (#) € R” is the state of the plant, » (¢)
R" is the control input to the plant, and y (¢) €
R! is the output of the plant. It is assumed that
(A, B) is controllable, and (A, D) is observ-
able. A4, B, and D are real matrices whose sizes
are appropriate to each system, matrix B being of
rank s and D of rank /. If the plant is controlled
by a continuous-time controller with gq-th order
error dynamic, a generalized feedback and feed-
forward control law is described by

2.8y =Fx, () +Gx(t) + Pr(t) 3
u(t)y=Rx.(#) —Qx(t) +Cr(¢) 4)

where x,(¢{)&S R is the state vector of the
dynamic controller of order q, a(})&R? is a
reference input, and F, G, P, R, @, and C are
matrices of appropriate dimensions. Pure inte-
gratorts or filters can be included in Eq. (3). The
system Eq. (1) augmented by Eq. (3) and Eq. (4)

is
[fcr((tg)]z[;? A—GBQ} [zr((tt))]+[3i3]r(t) )
Next, a continuous-time plant

controlled by a discrete-time controller with sam-
pling time T. The plant can be discretized by

x(RT+T)=0(T)x(kT) +O(T) u(kT),
x(0)=x, (6)

consider
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where
Q(T)=e*"
.
@(T)=£ O(T-D)Bdr k=0, -,

and y (ET) is piecewise constant.
A generalized discrete-time controller is re-
presented by

% (BT + T)=x,(kT) + T{Fx,(kT)
+Gx (RT)+Pr(kT)} ()
u(kT)=Rx,(kT) —Qx(kT} +Cr(kT} (8)

The closed-loop system combining the control-
ler dynamics can be written as

1 (kT+T))_[{+TF TG 1[x(kT)
[x(kﬂf)]‘[ OR (D—@Q][x(kT)}
+[£€}r(m ©)

where x (£T) € R" is the state vector of the plant,
and x,(kT)ER? is the state vector of the
dynamic controller.

Dynamic systems including a dynamic control-
ler as well as any conventional controllers, full-
state feedback or output feedback, can be de-
scribed by Eq. (5) and Eq. (9). The ISFF
dynamic control scheme is introduced in the next
section, which consists of at least one PDF con-
troller, with a full-state feedback, and a first-
order filter.
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4. Integrated Error with State-
Feedback and Filtering (ISFF)

We are concerned with a class of control prob-
lems for which the control system should satisfy
the following conditions (Krikelis 1982):

a) the steady-state error for a desired constant
reference input should be zero ;

b} the effect of constant but unknown distur-
bances should be completely removed from the
steady-state output;

¢) the outpur should not be susceptible to
system parametric uncertainties, while conditions
(a) and (b) continue to be valid.

One of the design methodologies to meet the
specifications (a) through (c) is ISFF control. It
is constructed by a serial connection of at least
one PDF controller, with full-state feedback, and
a first-order filter. If the closed-loop system is
stable, ISFF contro! rejects step disturbance
(input or output) due to the integrator in the
feed-forward loop. This is seen rteadily in the
construction of total transfer function. Figure 2
shows a block diagram of a typical single-input
single-output (SISO) ISFF control in the n-th
order plant.

Selecting F, G, R, and Q corresponding to the
continue-time ISFF control, the total system
becomes

288y =AXI(E) +Bir (), x5(0) =x& (10)

where
x,l xrl
+ k + + + -
r LI e W o W ‘ I n-th order
—"_CP s - - 2 stk,, system
kz kj -7 ku*l """
) F x, |x; | x

Fig. 2

ISFF control of n-th order plant.
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0 6 —& 0 .. 0

' —kpe —k2 —ks - —knn
A= 0 b an @iz "t Qin

0 bn ant Qnz " ann

Bg: [kl 0. O]lrx(rn-z)
28(8) =[%r1 Xrz2 220 %0)7

and x,, is the auxiliary state vector of ISFF, for ¢
=1, 2 and k; are ISFF controliler gains, for ;=1,
---, n+2. The order of the total system controlled
by ISFF control is increased by two for the n-th
order subsystem. The controller gains &, -+ kni2
can be obtained by pole-placement at the desired
location in the s-plane. In this system, we can
easily determine controller gains by using tech-
niques described in the next section. Symbolic
manipulation packages need not be used in these
higher-order systems to calculate the gains.

If the subsystem is controlled by discrete-time
ISFF control, the total system can be expressed by

x$RT + T)=Adx3(kT) + Bir (kT),

x5(0) =x5 (11)
where
1 0 —mKT 0 .. 0
V 1 ~kpi2 T —oT kT -+ —kans T
A§= 0 61 ¢11 Qélz ¢1n
0 6;: ¢n1 ¢n2 ¢M

Bi= [:‘%ITO Ojlrx{ru»z)

x3(kT)=[xr1 xr2 217 22] 7

The ISFF controller gains can be obtained by
pole-placement at the desired location in the z-
plane. The general formulation for obtaining
ISFF controller gains is derived in the next sec-
tions.

5. Evaluation of ISFF Controller
Gains

The ISFF controller gains in Eq. (10) and Eq.
(11) can be determined with the aid of the Jordan
-Canonical form. If the total system matrix A/,
has real multiple-order poles at one point of n-th
order, the Jordan Canoncal form is given by the
following transformation:

A=P'M.P (12)
where
A1 0 . . 0]
0411 0 0
A= Do
0 .o - A1
[0 e e 0 A
P=[P1 - Pn]

with A a multiple-order pole in the s-domain.
Rewriting Eq. (12),

(AI“M&)Pk:_PIz—b for k=07 R (13)

where P,=0

Applying Eq. (13) for ISFF control, which
increases the total order of the closed~loop system
by 2, the following equation with (n+2)-th
order is obtained:

A 0 b 0 By;
—1 Atkniz B2 o kan By
0 —b /{"au . T an :
0 ~bx —am " A~ G P{n+2)j
—Piop
— Pa-p
= : (14)
—P(n+2)(j~1)

where Ppro=0, for m=1, -, n+2, j=1, -, n+2.
We use the following submatrix to determine
P Pajy <ty Pryaj

EPf=P7, (15)
where

( -b1 /i’du — a1n-1)

E. ~bn1 — Q- " A= Qn-1n-1
L —bn —an
[ Py
Ps;

— Qn(n-1)

e
Ej

-P(n+1)j
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— P-4 QinPinan;
- PA(j—l) + dz;xp(mz)j
Pf-x= :

— _P{,Hz)(j_l) —A+ almf)(ni»z)j

Setting one of the eigenvector elements to be
equal to unity and choosing P,.z;=1, then P,
Py, +++s Piasn; can be obtained easily by solving
Eq. (15), assuming E, is not singular after a
multiple~order eigenvalue is placed in the desired
location. From the first row of Eq. (14), we
obtain

AP+ ki Pyy=— Pi-ny
Rearranging the above equation
Py=—ha; (16)

where
aj=‘/lT(—aj—1+P3j)’ for j=1, -, n+2 =0

Since Pj; is already known from Eq. (15), P;;can
be determined by Eq. (16).
Next, consider the second row of Eq. (14):

“Plj'f' (/1+kn+2) sz+k2P3_,‘+"'
+ knsrFinsns=— Pag-n {17)
Substituting Eq. {16) into Eq. (17)
aify+ Pajkat+ Pkt o+ Papszyikae
+ Pojknea= — APy~ Py-1 (18)

Rewriting Eq. (18), the resulting linear equation
becomes

k
k2
[_(Ij P3j P4j P(n+2)j Pz.i] .
kn+2
=[ APy~ Pas-n] (19)

This process is done for j=1, ---, +2. Finally,
the ISFF controller gains fk;, -+, kn.o can be
determined by a simple inversion of the matrix
obtained from j=1, .-, n+2.

If the system is controlled by a discrete-time
ISFF controller, the discrete-time controller
gains &y, -+, knsa Can be determined by a similar
manner. When multiple-order poles are placed at
the desired location in the z-domain, the general-
ized expression for a discrete-time ISFF control

is denoted as follows:

Zp— 1 0 kT - 0
"T Zp_l‘f’k;sz sz k;u-}T
Y —-6n Zp—¢u * — Piyn-yp
0 '“9;11 *‘!ﬁm : Zp“’¢nn
Py ~ Pi-n
Pe; — P
L= : (20)
-P(n+2).i '_'P(n+2)(j~l)
where

Pm0=0, m:ly Tty 7Z+2, j:‘_"lv Tty ”+2
zp=multiple-order pole in the z-domain.

The submatrix of the above equation can be
expressed by

E4Pf=P¢, 21
where
I ‘911 Zp_'¢ll _¢ln
Fum : : :
| =l =B = Pia-nia-ny
L — 07: - ¢n1 - ¢ﬂ(ﬂ-1)
- PZJ'
B
P)#: :
L-aP(m-l)i
r — B+ GinFPinsars
~ Pyt b2nPin+2);
de—1= :
L~ Piasag-n—2p+ GunPin+ari

In a similar manner, setting P, .); to be equal
to I, for j=1, ---, n+2, Eq. (21) gives Py, -+,
Pin+zy;- From the first and second rows of Eq.
(20), the consequent expression is

by
ks
T- [ﬁ; Ps; -+ Pinen; Pli] :
kn+2
=~ (2,—1) Pyy— Pas-n] (22)

where Pyy=0, By=0, for j=1, -, n+2
Bi=(—Fi-+T - Py) /{zp~1)
By inverting the coefficient matrix obtained
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from T-[f; Py -+ Plasns Poy] of Eq. (22) for j
=1, ---, n-+2, the discrete-time ISFF controller
gains &y, -+, ka2 can be determined easily.

6. Supervisory Control Scheme for
Saturated System

A supervisor implementation is introduced to
guarantee good performance in the saturation
region and to prevent reset windup. The basic
idea is to construct a supervisor of the nominal
plant such that it is an unconstrained model of the
plant. The supervisor technique to control the
system with actuator saturations assures good
performance as well as a less conservative stabil-
ity even when the saturating system has large
changes in a error. Bounded-input bounded-out-
put stability condition for supervisory control is
derived by Jeong(1992).

Let the n-th order LTI system with actuator
saturations be

2 (t)=Ax(t)+B sat u(t), x(0)=x(23)

where x (#) € R” is the state of the plant, 4 (¢) &
™ is the control input to the actuators, and sgf
u () ER™ is the saturated control input to the
plant. It is assumed that {4, B) is controllable,
and A and B are real matrices whose size is
appropriate to each system.

The saturation function is defined as follows
(Fig. 3):

Sat u

Fig. 3 Actuator saturation function

sat u(t)=[sat w(t) sat u:(t) - sat un(t)]”

where

Uu O w;>uy
sat u,~(t):{ui(t) for un<wu:<wuuw (24)
Ui for u,<uwu
for ;=1, -, m
Uy; . constant maximum limit
uy . constant minimum limit

The supervisor dynamics are given by
% () =A% (¢)+Ba (2) (25)

where

at)=u(t)~fx(t) =% (1)) (26)

and % ({) €R"™ is the supervisor state vector, 7
(¢)ER™ is the control input vector to the super-
visor, and f& R™" is the error gain matrix
between the plant and the supervisor.

The dynamic control law is of the form

Er(t)=Fx () +GZ () +Pr(t). (27)
u(t) =Rx,(t) —Qx (¥), (28)
where x,(¢)ER? is the state vector of the
dynamic controller of order ¢, r(¢)ER” is a
reference input, and F, G, P, R, ©, and C are
matrices of appropriate dimensions dependent on
the dynamic controller type.
Setting the error between the plant and supervi-
sor as es(t)=x(#) — % (¢#), the resulting error
~-dynamics can be expressed by

és(t)y=(A+Bf)es(t) +Blsat u(t)—ult)) (29)
Combining Eq. (25), Eq. (26), Eq. (27), Eq.
(28) and Eq. (29), we obtain the following
system :

FO=Acx () +T() +Pr(t) (30

where

f(t)=[~xr(t) £(t) es(t)]T

F G 0
A.=|BR A—BQ -—Bf
|0 0 A+Bf
i 0 P
Ue(t) = 0 P=|0
| B{sat w(t) —u(t)} 0

Equation (30) describes the closed-loop sys-
tem with a possibly saturated actuator and its
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———p1 Controller

Y

Supervisor

Fig. 4 Supervisory control with saturation

associated supervisor in the continuous-time case.
Figure 4 shows a typical block diagram of super-
visory control with actuator saturation. F, G, R,
and @ can be determined by pole-placement for
a submatrix of A, at the desired stable region in
the s-plane for linear operation, while the super-
visor error-gain matrix f can be chosen separate-
ly due to the structure of the closed-loop system
matrix A,.

If the continuous plant is controlled by a
discrete-time controller, the plant equation can be
discretized by

2 (kT+T)=0(T)x(kT) +0(T)sat u(kT) (31)
The discrete-time dynamic control law, includ-

ing IESF or ISFF, is written by

xr(kT‘f' T) =Xr(kT) + T{FXr(kT)
+GZ (kT) +Pr(£T)} (32)
u(kT)=Rx,(kT)—Qx (ET) (33)

The discrete-time supervisor dynamics are de-
scribed by
FRT+TY=0(T)RT)+O(T)a (kT) (34)
where
@ (kT)=u(kT)—f(x(kT)—x (kT)) (35
Setting the error between the plant and slupervi-

sor as gq(kT)=x(kT)— % (kT), the resulting
error dynamics becomes

es(kT)=(0(T)+O(T) Nl es(kT)

+6O(T) (sat u(kT)—u(kT)) (36)

From Eq. (32), Eq. (33), Eq. (34), Eq. (35)

and Eq. (36), the closed-loop system can be
expressed by

T (kT+ T) =A% (kT) + Uu(kT) + Br(kT) (37)

where

I+TF TG 0

As=| OR 0-0Q -6 |
| O 0 o+ 0f
[ 0

Ud(kT)= 0 s

| O{sat u(ET)—u(kT)}
‘TP

P=| 0
] 0

Equation (37) implies a discrete-time closed-
loop system with the actuator saturations and its
associated supervisor. F, G, R, and § can be
determined by pole-placement of the submatrix of
A, at the desired location in the z-plane, while
the supervisor error-gain matrix # can be chosen
independently from the error dynamics.

7. Conclusions

A design method for a dynamic controller
(ISFF) is provided for continuous-time and
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discrete-time systems. ISFF controller gains k&,
.-+, knis can be obtained by a simple matrix
inversion using the Jordan-Canonical form. This
procedure does not require any symbolic mathe-
matical package to get Ay, ---, kn... When
actuators are saturated, a newly.developed algor-
ithm to prevent integrator wind-up and perfor-
mance deterioration is proposed by implementing
a supervisor as a nominal plant.

Based on the modern control algorithm, a typi-
cal multi-echelon production-distribution system
can be numerically simulated by using the ISFF
dynamic control law when the piecewise constant
manufacturing decisions is upper-limited due to
capital equipment, limited by a factory manufac-
turing manpower, and factory lotsize. Informa-
tion management scheme and numerical illustra-
tions for perturbed multi~echelon systems will be
shown in the part J.
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